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1 Introduction

As is well known, the notion of Dirichlet integral of a function on an Eu-
cledian domain had been deeply involved in the development of the mathe-
maical analysis from 19th century to 20th century. But the present concept
of the Dirichlet form was first introduced in 1959 by A. Beurling and J.
Deny[BD59] as an axiomatization of the Dirichlet integral:
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A closed symmetric form on an L2-space is called a Dirichlet form if the
norm of f ∈ L2 decreases whenever the variation of f gets smaller.

The study of general boundary conditions for the one-dimensional diffu-
sions initiated by W. Feller in 1950 was successfully completed by Itô and
McKean [IM65] around 1959. Thus many Japanese young probabilists in
the 1960s were eager to investigate the so called the boundary problem for
more general Markov processes looking for
firstly, analytic characterzations of possible Markovian extentions of the
transition functions of a given minimal Markov processes
secondly, realization of those analytic extensions to be associated with
genuine strong Markov processes with regular sample paths.

I approached to this problem starting from Dirichlet forms and revealed
new significant prospects for the Dirichlet form as will be explained briefly
below.

2 Dirichlet form and Markovian semigroup

2.1 Dirichlet form and Markovian semigroup

• (S,B,m): σ−finite measure space

Let (f, g) =
∫
S f(x)g(x)m(dx), f, g ∈ L2(S;m)

• (E ,F) symmetric form on L2(S;m)

def⇐⇒
F is a dense linear subset of L2(S.m), E is a non-negative definite sym-
metric bilinear form: a bilinear map from F × F to R, E(u, v) =
E(v, u), E(u, u) ≥ 0, ∀u, v ∈ F

• a symmetric form (E ,F) on L2(S;m) is closed

def⇐⇒
F is a Hilbert space with inner product Eα(u, v) = E(u, v) + α(u, v)
for any α > 0

• A family of symmetric linear operators {Tt, t > 0} on L2(S;m) is
called an  L2-semigroup if it is a strongly continuous contraction semi-
group in the sense that
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TtTs = Tt+s, ||Ttf ||L2 ≤ ||f ||L2, limt↓0 ||Ttf − f ||L2 = 0, ∀f ∈ L2.

• Closed symmetric forms on L2(S;m) and L2-semigroups are in one to
one correspondence by the relation

E(f, g) = lim
t↓0

1

t
(f−Ttf, g), F = {f ∈ L2(S;m) : E(f, f) <∞} (2.1)

(a bilinear version of a generator of a semigroup)

• L2-semigroup {Tt, t > 0} is Markovian

def⇐⇒ f ∈ L2(S;m), 0 ≤ f ≤ 1 [m] =⇒ 0 ≤ Ttf ≤ 1 [m], ∀t > 0

• a real function φ = φ(t), t ∈ R is a normal contraction

def⇐⇒ φ(0) = 0, |φ(t)− φ(s)| ≤ |t− s|, ∀t, s ∈ R

Theorem 2.1 (A.Beurling and J.Deny[BD59], cf. [FTake08]. [CF12])
Let (E ,F) be a closed symmetric form on L2(S;m) and {Tt, t > 0} be the
associated L2 semigroup.

Then {Tt, t > 0} is Markovian if and only if

(*) every normal contraction operates on (E ,F)
in the sense that, for any normal contraction φ and for any u ∈ F ,
v = φ(u) ∈ F and E(v, v) ≤ E(u, u).

A closed symmetric form on L2(S;m) satisfying (*) is called a
Dirichlet form.

Axiom (*) is due to Beurling [BD59], partly motivated by his study of
the Douglas integral (2.4).

2.2 Examples of Dirichlet form

(a) D: connected open subset of Rn

D(u, v) =
n∑

i=1

∫
D

∂u(x)

∂xi

∂v(x)

∂xi
dx (2.2)

with domain

H1(D) = {u ∈ L2(D) :
∂u

∂xi
∈ L2(D), 1 ≤ i ≤ n} (2.3)
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Sobolev space of order 1. (2.2) is Dirichlet integral.

(b) D = D unit disk with center 0. T = ∂D

C(φ, ψ) =

∫
T×T

(φ(θ)− φ(θ′))(ψ(θ)− ψ(θ′))U(θ, θ′)dθdθ′ (2.4)

D(C) = {φ ∈ L2(T) : C(φ, φ) <∞}.

where U(θ, θ′) = [4π(1− cos(θ − θ′)]−1. Douglas integral[Dou31]

C(φ, ψ) = D(Hφ,Hψ) ;

Hφ is harmonic function with boundary function φ(θ)

studied by A. Beurling[B39] in relation to exceptional set for Lebesgue
point

3 Regular Dirichlet form and symmetric Hunt pro-

cess

3.1 Potential theory for regular Dirichlet form

announced in Beurling-Deny[BD59] and proved in Deny[D70]

S: locally compact separable meric space
m: positive Radon measure (Borel measure finite on compact sets) with
full support

• Dirichlet form (E ,F) on L2(S;m) is regular

def⇐⇒
F ∩Cc(S) is dense in (F , E1) and in Cc(S) with ||u||∞ = supx∈S |u(x)|

• For open set A ⊂ S, let LA = {u ∈ F : u ≥ 1 m − a.e.on A} and
Cap(A) = infu∈LA

E1(u.u), which is called the capacity of A.

• B ⊂ S of zero outer capacity is called almost polar.

Almost polar set is m-negligible.

‘Quasi everywhere’ (q.e.) means ’except for an almost polar set’.

• A function u on S is quasi continuous if
∀ε > 0, ∃A open with Cap(A) < ε, u

∣∣
S\A is continuous.
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• If u is quasi continuous and u ≥ 0 m-a.e., then so it is q.e.

Under the regularity of Dirichlet form (E ,F),

• any u ∈ F admits its quasi continuous m-version ũ

• un, u ∈ F , un are quasi continuous, ||un − u||E1 → 0

=⇒
∃{nk} unk

converges q.e. to a quasi continuous version of u

3.2 Symmetric Hunt process associated with regular Dirichlet
form

Sδ = S ∪ δ: the one point compactification of S.

X = (Ω,Gt, Xt(ω), ζ(ω),Px) Markov process on S
def⇐⇒

• Xt(ω) ∈ Sδ; Xt(ω) ∈ S, t ∈ [0, ζ(ω)), Xt(ω) = δ, t ≥ ζ(ω),

X·(ω) is called sample path. ζ(ω) is called its lifetime.

Xt ∈ Gt/B(Sδ), {Gt}: increasing σ-fields of subsets of Ω.

• Px(X0 = x) = 1, x ∈ Sδ.

• (∗∗) Px

(
Xt+s ∈ B

∣∣Gt

)
= PXt

(Xs ∈ B), Px−a.s. B ∈ B(Sδ)

We put Pt(x,B) = Px(Xt ∈ B) and call it the transition function of X.
If we let Ptf(x) =

∫
S Pt(x, dy)f(y) for f ∈ B+(S), then {Pt, t > 0}

satisfies Markovian property: 0 ≤ f ≤ 1 ⇒ 0 ≤ Ptf ≤ 1 and semigroup
property: PtPs = Pt+s. (transition semigroup of X)

A Markov process on S is called symmetric with respect to a measure
m
def⇐⇒ ∫

S Ptf(x)g(x)m(dx) =
∫
S f(x)Ptg(x)m(dx), t > 0, f, g ∈ B+(S).

A Markov process X on S is a Hunt process (introduced by [Hu57-58])

def⇐⇒
• strong Markov (Markov property (∗∗) holds by replacing time t with
any random time called a stopping time)
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• the sample path X·(ω) is right continuous on [0,∞), has left limit on
(0,∞) and quasi left continuous on (0,∞)

A Hunt process whose sample path is continuous on [0, ζ) is called a
diffusion.

N ∈ B(S) is properly excepional for a Hunt process X on S

def⇐⇒ m(N) = 0, Px(Xt, Xt− ∈ S \N, ∀t ∈ [0, ζ)) = 1, ∀x ∈ S \N,
Namely,S \N is an invariant set for X.

Theorem 3.1 Let (S,m, E ,F) be a regular Dirichlet form.

(i) There exists an m-symmetric Hunt process X on S properly associated
with it in the following sense:

Ptf is a quasi continuous version of Ttf for any f ∈ B(S) ∩ L2(S;m),

(ii) Uniqueness: If X1, X2, are properly associated, then there exists a
properly excepional set N for both processes and X1

∣∣
S\N ∼ X2

∣∣
S\N

Properly exceptional set is almost polar.

Method of proof

(I) ([F71a],[F71b]) Two Dirichlet forms (S,m, E ,F) and (S̃, m̃, Ẽ , F̃)
are called to be equivalent if there is an algebraic homomorphism Φ be-
tween Fb and F̃b preserving L∞, L2 and E-norms. The latter is called a
representation of the former. The following two assertions yield a proof.

• Any Dirichlet form admits a strongly regular representaton: the resol-
vent of the associated semigroup of the latter has a nice property due
to D.B. Ray[R59] and [KW67].

• If two regular Dirichlet forms are equivalent under Φ, then Φ is induced
by a quasi-homeomorphism between S and S̃.

In [F69], I could characterize all symmetric conservative Markovian ex-
tensions of the resolvent of the absorbed Brownian motion on any bounded
Euclidean domain in terms of the family of Dirichlet forms on the Martin
boundary dominating the Douglas integral.
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So I turned to the second issue of making each extended resolvent to
be associated with a strong Markov process. For this, the method due to
Ray and Knight of a compactification of the underlying space was known
at that time.

The strongly regular representation of any Dirichlet form is its profound
intrinsic generalization.

(II) (M.L.Silverstein[S73], Fukushima[F73]) Use the Markov property
of L2-semigroup {Tt, t > 0} and the potential theory for regular Dirichlet
form directly to construct an appropriate transition function Pt(x,B) from
Ttf ∈ F , f ∈ L2(S;m), by removing sets of zero capacity where desired
relations may fail to hold successively.

Thus, the above theorem becomes a quite general assertion independent
of the boundary problem for Markov processes.

4 Road map and speed

Let (E ,F) be a regular Dirichlet form on L2(S;m) and X = (Ω,Gt, Xt(ω), ζ(ω),Px)
be the m-symmetric Hunt process properly associated with it.
How do m and E indicate behaviours of X ?　

4.1 Invariance of E on Fe under time change

Analogously to a famous saying of W.Feller for one dimesional diffusions,
I wrote in [F71b]:

It may be asserted that the sample path Xt(ω) will run with speed indicated
by the underlying measure m and along the roads indicated by the 0-order
Dirichlet form E independent of its speed.

Concuring with this, Silverstein[S74] introduced the notion of the ex-
tended Dirichlet space Fe a natural extension of the domain F of the 0-
order Dirichlet form E suggesting (Fe, E) to be a right road map.

Every function in Fe is finite m-a.e. on S, admits its quasi continuous
m-version and it holds that F = Fe ∩ L2(S;m).

A precise assertion will be stated below using the concept of additive
functional (AF) of X.
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An extended real valued function At(ω) of t ≥ 0, ω ∈ Ω, is
an additive functional (AF) of X
def⇐⇒

• At(·) is Gt-measurable

• A0 = 0, |At| <∞,∀t ∈ [0, ζ), At is right continuous and has left limit
∀t ∈ [0, ζ), At = Aζ , t ≥ ζ, Px−a.s.∀x ∈ S \N.

• At+s(ω) = At(ω) + As(θtω), ∀t, s ≥ 0, Px−a.s.∀x ∈ S \N,

where N is some properly exceptional subset of S.

Two AFs At and Bt are said to be m-equivalent if Pm(At ̸= Bt) = 0 for
every t ≥ 0.

Denote by
◦
S the collection of all positive Radon measures µ on S charg-

ing no almost polar set with full support.

For instance, µ = g ·m ∈
◦
S if g ∈ Bb(S) and g > 0 m-a.e. on S.

For any µ ∈
◦
S, there exists a strictly increasing positive continuous

AF(PCAF) At of X uniquely up to m-equivalence such that∫
S

f(x)µ(dx) = lim
t↓0

1

t
Em

[∫ t

0

f(Xs)dAs

]
, ∀f ∈ B+(E).

Such At is called the PCAF of X determined by µ ∈
◦
S.

For instance, At =
∫ t

0 g(Xs)ds.is the PCAF determined by µ = g ·m as
above.

Invariance of E on Fe under time change

For any µ ∈
◦
S, take the PCAF At of X determined by µ. Let

X̌ = (X̌t(ω), ζ̌(ω),Px) where X̌t(ω) = XAt(ω)−1(ω), ζ̌(ω) = Aζ(ω)−(ω),

which is called the time changed process of X by At.

Theorem 4.1 ([CF12]) (i) X̌ is µ-symmetric Hunt process on S.
(ii) Let (Ě , F̌) be the Dirichlet form on L2(S;µ) of X̌.

Then (Ě , F̌) is regular.
(iii) Let (F̌e, Ě) be the extended Dirichlet space of (Ě , F̌).

Then (F̌e, Ě) = (Fe, E).
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Hence, F̌ = Fe ∩ L2(S;µ), µ ∈
◦
S. Recall F = Fe ∩ L2(S;m).

4.2 Probabilistic expression of E on Fe (road map)

An AF At of X is called of finite energy if e(A) = limt↓0
1
tEm[A

2
t ] <∞.

For u ∈ Fe, A
[u]
t = ũ(Xt) − ũ(X0) is of finite energy admitting unique

Fukushima decomposition[F79]

A
[u]
t =M

[u]
t +N

[u]
t

where M [u] is a martingale AF (mean zero and square integrable AF) of
finite energy and N [u] is continuous AF of zero energy.

By making further orthogonal decomposition of M [u] as

M
[u]
t =M

[u],c
t +M

[u].j
t +M

[u],k
t

and evaluating the energy of each term, we arrive at the next theorem.

E is called strongly local if E(f, g) = 0 whenever f ∈ F has a compact
support and g ∈ F is constant on a neighborhood of the support of f .

Theorem 4.2 ([FTake08], [FOT11], [CF12]) (I) E on Fe admits a unique
expression: for u, v ∈ Fe,

E(u, v) = E (c)(u, v)

+
1

2

∫
S×S\d

(ũ(x)− ũ(y))(ũ(x)− ṽ(y))J(dx, dy) +

∫
S

ũ(x)ṽ(x)κ(dx),

where E (c) is a strongly local symmetric form, J is a symmetric Radon
measure on S × S \ d and κ is a Radon measure on S.

(II) J(dx, dy) = N(x, dy)µH(dx), κ(dx) = N(x, {∂})µH(dx)
where (N(x, dy), H) is the Lévy system of the Hunt process X introduced
by S.Watanabe[W64] and µH is the Revuz measure of the PCAF H.

(III) E is strongly local if and only if X is a diffusion with no killing inside
S, namely, its path is continuous on [0,∞) a.s.
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5 Quasi-regularity vs regularity for Dirichlet form

Although the regularity of a Dirichlet form is a sufficient condition to
associate a nice Markov process called a Hunt process, it may not be a
necessary condition for its association with a nice Markov process.

Furthermore, the local compactness assumption on the underlying space
S is too restrictive in dealing with infinite dimensional objects.

In this regard, an important notion of quasi-regular Dirichlet form was
introduced by Albeverio-Ma[AM91], and its detailed study was presented
in Ma-Roeckner[MR92] under the framework of generel non-symmetric
Dirichlet forms.

Let S be a general topological Hausdorff space, m be a σ-finite measure
on S with full support and (E ,F) be a Dirichlet form on L2(S;m).

For a closed set C ⊂ S, let FC = {u ∈ F : u = 0 m-a.e. on S \ C}
An increasing sequence {Ck} of closed sets is called an E-nest if

∪∞
k=1FCk

is E1-dense in F .
A set N ⊂ S is called E-polar if N ⊂

∩∞
k=1(S \ Ck) for some E-nest

{Ck}.
E-q.e. means ‘except for an E-polar set’.
A function u on S is called E-quasi continuous if u

∣∣
Ck

is continuous for
any k ≥ 1 for some E-nest {Ck}.

Let (E ,F) be a Dirichlet form on L2(S;m) for a pair (S,m) as above.

(E ,F) is quasi regular
def⇐⇒

(i) there exists an E-nest consisting of compact sets
(ii) there exists an E1-dense subset F0 of F such that each f ∈ F0 admits

E-quasi contnuous m-version
(iii) there exist functions {fk, k ≥ 1} ⊂ F and an E-polar set N such

that each fk admits E-quasi continuous m-version f̃k and {f̃k} separates
points of S \N .

If (S,m, E ,F) is a regular Dirichlet form, then it is quasi regular.
Further E-polarity and E-quasi continuity are synonims of almost po-

larity and quasi continuity defined in §3.1 in terms of capacity.

Here are three fundamental theorems on quasi regular Dirichlet form
formulated in [CF12].
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Theorem 5.1 (Albeverio-Ma[AM91], Fitzsimmons[Fi01]) Let S be
a Lusin space, m be a σ-finite measure on it with full support and X be an
m-symmetric right process on S.

Then the Dirichlet form of X on L2(S;m) is quasi regular and
X is properly associated with it.

Theorem 5.2 (Chen-Ma-Roeckner[CMR94]) If (S,m, E ,F) is quasi
regular Dirichlet form, then there exist

a regular Dirichlet form (Ŝ, m̂, Ê , F̂) and
a quasi homeomorphism j from S to Ŝ such that
m̂ = m ◦ j−1 and (Ê , F̂) on L2(Ŝ; m̂) is the image Dirichlet form of

(E ,F) on L2(S;m) by j.

In the second theorem, the locally compact separable metric space Ŝ is
chosen as the character space of a certain closed subalgebra of L∞(S;m)
in an analogous manner to [F71a].

This theorem enables us to transfer known results for regular Dirichlet
forms to quasi regular ones (transfer method).

In particular, Theorem in subsection 3.2 is transfered to

Theorem 5.3 For any quasi regular Dirichlet form (S,m, E ,F), there are
an E-polar Borel set N ⊂ S and an m-symmetric special Borel standard
process X on S \N that is properly associated with (E ,F).

6 Three different cases of underlying space S

6.1 Fractal sets

S: fractal set like Sierpinski gasket and Sierpinski carpet
S has a self similar structure but does not have a differential structure.

studied by Fukushima-Shima[FS92], S.Kusuoka, J.Kigami[Ki01], T. Ku-
magai, M. Hino[Hi13], et. al.

• m: Hausdorff measure on S

• strongly local regular Dirichlet form on L2(S;m) was constructed.
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• The associated symmetric diffusion X on S is called the Brownian
motion on S

• In many cases, the space of MAFs of X of finite energies has dimension
1, while the Hausdorff dimension of S is larger than 1 (cf. [Hi13]).

6.2 Configulation space

Γ = {γ =
∑
i

δxi
: γ(K) <∞, for any compact sebset K ⊂ Rn}

equipped with vague convergence topology to be a Lusin space
studied by H. Osada, H.Tanemura[OT20] et. al.

• S = Γ

• m = µ: quasi Gibbs measure on Γ introduced by Osada[O13]

• (E ,F): Dirichlet form on L2(Γ, µ) defined in a close relation to µ

• verify that it is a strongly local quasi regular Dirichlet form

• The associated symmetric diffusion X on Γ represents a motion of
unlabeled particles with invariant measure µ

• Similar Dirichlet forms are then used to solve infinite dimensional SDE
representing a motion of interracting infinitely many particles

6.3 Quotient space of multiply connected planar domain

G ⊂ C: domain such that either G = C or C \ G is continuum (closed
connected, containing at least two points)

D = G \K, K =
∪N

i=1Ai: (N + 1)-connected domain
Ai are mutually disjoint compact continua.

D∗ = D ∪ K∗, K∗ = {a∗i : 1 ≤ i ≤ N}: quotient topologocal space
obtained from G by rendering each set Ai into singleton a∗i

m: Lebesgue measure on D being extended to D∗ by setting m(a∗i ) =
0, 1 ≤ i ≤ N

X: Brownian motion with darning (BMD)
def⇐⇒
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m-symmetric diffusion onD∗ admitting no killing onK∗ whose part process
on D is identical in law with the ABM on D

(BMD is a key to extend the SLE theory from simply connected domains:
the restriction to D of any BMD-harmonic function v admits an analytic
function f on D with ℑf = v up to an addtional real constant).

Existence and uniqueness of BMD X
Proved in [CFM23] by using the following description of the Dirichlet form
(E∗,F∗) of X on L2(D∗;m) indicated in [CF12, Th.7.7.3 (vi)]:

F∗ is linear subspace ofH1(D) spanned byH1
0(D) and {u(i)1

∣∣
D
, 1 ≤ i ≤ N},

E∗(u, v) = 1
2

∫
D ∇u(x) · ∇v(x)dx, u, v ∈ F∗,

where u
(i)
1 is the 1-order hitting probability for the set Ai of the ABM

(Zt,PG
z ) on G: u

(i)
1 (z) = EG

z [e−σK ;ZσK
∈ Ai] , z ∈ G.

• (E∗,F∗) is a strongly local regular Dirichlet form on L2(D∗;m) and
each a∗i is of positive capacity =⇒ associated symmetric diffusion
X can be refined to be a BMD starting at every point of D∗

• X is BMD on S = D∗ =⇒
the associated Dirichlet form (E ,F) on L2(D∗;m) is quasi-regular and
the transfer method works in getting (E ,F) = (E∗,F∗).
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